If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-6n-18=0
a = 10; b = -6; c = -18;
Δ = b2-4ac
Δ = -62-4·10·(-18)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{21}}{2*10}=\frac{6-6\sqrt{21}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{21}}{2*10}=\frac{6+6\sqrt{21}}{20} $
| sX4-16=36 | | 0.3(15)+0.05x=0.20(x+15) | | 3(y-5)+7y=-25 | | 3(x+3)-5x=-5 | | 0.9s-6.3=4.5 | | 25+x+69=180 | | 5(v-5)-3v=-19 | | -15x+(-7.5)=15 | | 3m+13=4m-8 | | (x-6)(3x^2+10x-1)=0 | | 49+5y-9=14y-9-2y | | 12(x+8)=11x5 | | 2x-5(x-3)=-7+4x-6 | | 15x-(-37.5)=15 | | 4.9x^2+12x-30.4=0 | | (5x)+(5x)+(2x+12)+(2x+12)=360 | | 4x+10=26- | | 7x-13=9x-5 | | 5m+28=58 | | 1/9y=18 | | 0.1(x=7)=3.5 | | x+x(0.07)=11,727 | | 7-7=17x+3x | | g2–13g–14=0 | | 16x+3=4x+50 | | r-18.7=-6.2 | | 246.05=(7.80+4.70+x)19 | | 8c-1=13 | | (2x+50)+(x-18)+x=180 | | 500=0.25x-x | | 100-x=0.6x | | 4-2y-2y=12 |